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Designing Experiments

• Define the relevant population and the intervention that is to be
evaluated

• Decide on the hypotheses to be tested and define clearly the outcome
variables you are interested in.

• The next step relates to deciding on the sample size. The sample size
will be determined by the power to detect effects of particular size.

• The estimator of the ATE (b̂) in a simple randomized experiment is

b̂ = Ȳ1− Ȳ0

where Ȳk denotes the mean outcome in the treatment (k = 1) or control
(k = 0) sample. Because we have randomized we do not need to worry
about correlation of outcomes be treatment and control units.



Designing Experiments - Setting the
sample size

• When randomization takes plce a tthe individual level the standard error
of b̂ is

se(b̂) =

√
σ2

1
N1

+
σ2

0
N0

• where σ2
k is the variance in the kth (1,0) group. The variance may differ

because of heterogeneous treatment effects. N1 and N0 are the
respective sample sizes.



Designing Experiments - Setting the
sample size

• Now suppose we want to be able to detect an effect of at least a with
power p%. This means the if the true effect is a we want to choose our
sample size so that we reject the null hypothesis that the effect is zero
with probability p% when the significance level chosen is 5%

• For a two tailed test this means that we wish to choose the sample size
so that

p(−ta < tb < ta) = 1−p/100

when the impact is a, where tb is the standard t-statistic b̂/se(b̂) and ta
is the critical value.

• We choose tα (based on α) and p. We need to know in advance σ2
1 and

σ2
0 . We then choose N1 and N2 to be consistent with these choices.



Designing Experiments - Example for
setting the sample size

• Intervention: Offer a school subsidy to children between 12 and 16
(conditional on attendance)

• The outcome variable is school attendance of children both in the
eligible age group and younger: The effect is likely to be positive on the
subject children but could be anything on younger children in the
family.

• Suppose the proportion attending pre-intervention is 0.4. This implies

that σ2
0

N0
= pr×(1−pr)

N0
= 0.24

N0
.



Designing Experiments - Example for
setting the sample size

• Policy makers have decided that an effect of 0.1 (a = 0.1 or 10%)

would make the program worthwhile. If this occurred σ2
1

N1
= 0.52

N1
. This is

a safe assumption because the variance of a proportion is maximized at
pr = 0.5.We decide to design the sampling so that N0 = N1 = N. This
maximizes the variance of the right hand side variable (variance of
treatment = pT (1−pT ) = 0.52).

• We also decide that any hypothesis will be tested using 5% level of
significance. Finally, we wish to reject the null with probability at least
p = 0.8 if the true effect is larger than 0.1. To achieve this under the
stated conditions we need to find the suitable sample size for each
group N.



Designing Experiments - Setting the
sample size

• If the true effect is a = 0.1 we have that asymptotically

b̂
a
˜N

(
a,p lim

(
se(b̂)

)2
)
. We want to find N so that the following is

true

p(−1.96 <
b̂

se(b̂)
< 1.96) = 0.20

• In other words we want the t-statistic to be such that in 80% of the
times we reject this false hypothesis.



Designing Experiments - Setting the
sample size

In our example, under the alternative this is equivalent to

p(−1.96− 0.1√
σ2
1

N1
+

σ2
0

N0

< b̂−0.1
se(b̂)

< 1.96− 0.1√
σ2
1

N1
+

σ2
0

N0

)

= p(z < 1.96−0.143
√
N)−p(z <−1.96−0.143

√
N) = 0.2

where z˜N(0,1)



Designing Experiments - Setting the
sample size

• In practice p(z <−1.96−0.143
√
N)≈ 0.

• p(z < 1.96−0.143
√
N) = 0.2 implies 1.96−0.143

√
N =−0.84 (from

the Normal distribution tables)
• Thus, in this case we need to have that 1.96−0.143

√
N =−0.84 which

implies a sample size of approximately 384 observations for the
treatment and 384 for the control. Note that in this case
p(z <−1.96−0.143

√
N) = p(z <−4.76) = 9.680e−07. No

adjustment need be made for the left tail.



Spatial Correlation and the estimator
covariance matrix

• Then it is easy to show that the above general formula for the variance
of the single βOLS becomes

var(β
OLS) =

σ2

(NcM)Var(X )
(1+ (M−1)ρxρu)

• Note that vOLS = σ2

(NcM)Var(X ) is the variance of the OLS estimator if
we assume no spatial correlation, i.e. the standard case.



Spatial Correlation and the estimator
covariance matrix

• In a pilot study X may be the treatment. If the treatment is administered
to a whole cluster (e.g. village) then ρx = 1. Moreover between the
units of randomization the spatial correlation of X will be zero.

• In this case the formula becomes

var(β
OLS) =

σ2

(NcM)P(1−P)
(1+ (M−1)ρu)

where P is the probability of allocation to treatment. MAx power when
P = 0.5.

• The sample size is NcM . First note that for any given total sample size
the variance increases with the size of the cluster. Thus it is much better
to design a clustered sample so that there are many clusters with few
members in them rather than the other way round (for a given sample
size of course)



Power calculation with spatial correlation

• We need to know/make assumptions on the intra cluster spatial
correlation ρ

• Fix the probability of allocation to treatment (in the sample)
• Define the minimum detectable effect a.
• We need to fix either M (individuals in cluster) or Nc number of

clusters
• Power not very sensitive to M when spatial correlation is reasonably

large. So fix M and find Nc by solving

p(−1.96− a

σ

√
(NcM)P(1−P)

(1+ (M−1)ρu)
< z < 1.96− a

σ

√
(NcM)P(1−P)

(1+ (M−1)ρu)
) = 0.20

• In practice try alternative values of ρ and M to check sensitivity of the
number of clusters.



Multiple Hypothesis testing - The Problem

• References
1 Romano, J, M Wolf (2005) Stepwise multiple testing as formalized data

snooping, Econometrica 73
2 Joseph P Romano, Azeem M Shaikh, Michael Wolf Formalized data

snooping based on generalized error rates, Econometric Theory, 24, 2008

• Suppose we wish to test S hypotheses of the form Hs :θs = θ0s .
• When we test a hypothesis there is a probability we reject it even if it is

true (Type I error)
• This probability is regulated by the choice of critical value depending

on the distribution of the test statistic under the null
• For example if the test statistic is standard normal choosing critical

values of ±1.96 implies a type I error of 5%
• This does mean that in testing 100 true hypotheses we will on average

reject 5 if they are independent.



The Problem

• However, we would really like to control for the Type I error for the set
of hypotheses we are testing - the Familywize error rate FWE.

• So if the FWE is set at 5% this would then imply that the probability of
rejecting at least one hypothesis (which means reject the joint set of
hypotheses) is at most 5%.

• A simple adjustment is provided by the Bonferroni procedure: with k
hypotheses being tested compare each test statistic to a critical value
corresponding to a significance level of (α/k).

• So for example for 10 hypotheses and an overall size level of 5% we
would test each parameter at the 0.5% level.



The Problem

• However, the Bonferroni is too conservative in the sense that the critical
value for rejecting a hypothesis is for most cases far too large - it
requires far too high t-statistics to conclude that something is
significant.

• From Romano, Shaikh and Wolf (2008) we have that the Bonferroni
procedure controls asymptotically for the Familywize error rate if the
distribution of each p-value corresponding to a hypothesis being tested
is stochastically dominated by a uniform distribution, i.e.

Hs true =⇒ limN→∞P(p̂T ,s <= u) <= u

• The Bonferroni procedure ends up bing too conservative because it
does not take into account the actual dependence structure between the
hypotheses. Bonferroni assumes the worst case dependence structure.

• With modern simulation techniques we can do much better, exploiting
the actual dependence structure.



Solutions to multiple hypotheses testing
problem

• Start by defining the Family-wise error rate (FWE): The probability of
rejecting one or more hypotheses falsely.

• The aim is to use a procedure that controls for the FWE allowing for the
actual dependence structure among the test statistics

• We already know that we can test the hypotheses jointly using an
F-statistic.

• This will test the joint hypothesis and control the Type I error at the
desired level (say 5%)

• However, it will not be informative as to which hypotheses are
responsible for rejection.

• In a more general sense we would like to derive adjusted p-values for
each hypothesis separately, while controlling for the FWE

• The FWE is the probability that any of the set of true hypotheses is
rejected

• We require that the FWE holds even when some hypotheses are false
(strong control)



The Romano and Wolf Stepdown
procedure

• Define the k−FWE as the probability of rejecting at least k hypotheses
falsely from among those that are true

• Usually we set k to 1.
• However, if there are that many hypotheses to test we may loose power.

By increasing k we can regain some power at the expense of Type I
error probability.

• A multiple hypothesis method controls the k-FWE (asymptotically) at
the level α if supN−>∞k−FWE ≤ α , where N is the sample size.



The Romano and Wolf Stepdown
procedure

• Take the standard case where k = 1, i.e. we tolerate no false rejections.
• Suppose the significance level is α . Take the case of a one-sided test.
• Suppose we can construct a critical value such that the probability of

the largest test statistic being below c1 is 1−α under the null
• Then in step one reject all hypotheses where the test statistic is above
c1.

• If we reject no hypotheses we stop.
• Suppose we reject R1 hypotheses.
• We can now be confident that some of the hypotheses are false.
• Hence we can start again this procedure since false hypotheses do not

affect the Type I error.
• We delete the rejected hypotheses and start again.
• for a k-FWE control we define the critical value in terms of the quantile

of the the k-th largest statistic.



A bootstrap method for the stepdown
procedure

1 Start by constructing a test statistic for each hypothesis. This could the
t-statistics

2 Suppose we are carrying out the usual two-sided tests. Then take the
absolute value of these tests

3 Sort them from largest to smallest.



A bootstrap method for the stepdown
procedure

• Draw M (many) bootstrap samples (with replacement).
• For each sample:

1 construct the same test statistic
2 Center it by subtracting its value obtained from the orignal sample (to

ensure the null is true in the bootstrap sample) and take the absolute value
3 Find the Maximum of the absolute values of these centered statistics.

• Once we have simulated the distribution of the max absolute value find
the 1−α percentile

• Reject all the hypotheses for which the original test statistic is above
this critical value

• If you reject at least one, delete these test statistics from the original set
and from the bootstrap sample and repeat

• To derive p-values repeat this exercise with different values of α

(0.005, 0.01, 0.015, 0.02, 0.03,... )



A view from the non-economics literature

• “In the tables reporting the p-values, the authors do something I have
never seen before in a published paper. They report the uncorrected
p-values, indicating those that are significant (prior to correction) in
boldface, and then put an asterisk next to those that are significant after
their (incomplete) correction.” from Does researching casual
marijuana use cause brain abnormalities? by Lior Pachter
https://liorpachter.wordpress.com/2014/04/17/does-researching-casual-
marijuana-use-cause-brain-abnormalities/


